from great_tables import GTfrom great_tables.data import countrypopsimport polars as plimport polars.selectors as cs# Get vectors of 2-letter country codes for each region of Oceaniaoceania = {"Australasia": ["AU", "NZ"],"Melanesia": ["NC", "PG", "SB", "VU"],"Micronesia": ["FM", "GU", "KI", "MH", "MP", "NR", "PW"],"Polynesia": ["PF", "WS", "TO", "TV"],}# Create a dictionary mapping country to region (e.g. AU -> Australasia)country_to_region = { country: region for region, countries in oceania.items() for country in countries}wide_pops = ( pl.from_pandas(countrypops) .filter( pl.col("country_code_2").is_in(list(country_to_region))& pl.col("year").is_in([2000, 2010, 2020]) ) .with_columns(pl.col("country_code_2").replace(country_to_region).alias("region")) .pivot(index=["country_name", "region"], columns="year", values="population") .sort("2020", descending=True))( GT(wide_pops, rowname_col="country_name", groupname_col="region") .tab_header(title="Populations of Oceania's Countries in 2000, 2010, and 2020") .tab_spanner(label="Total Population", columns=cs.all()) .fmt_integer())
/var/folders/_5/l_f9_2dj4n5dpm0ztth7n97c0000gp/T/ipykernel_38699/3569039387.py:26: DeprecationWarning: The argument `columns` for `DataFrame.pivot` is deprecated. It has been renamed to `on`.
.pivot(index=["country_name", "region"], columns="year", values="population")
Populations of Oceania's Countries in 2000, 2010, and 2020
Total Population
2000
2010
2020
Australasia
Australia
19,028,802
22,031,750
25,655,289
New Zealand
3,857,700
4,350,700
5,090,200
Melanesia
Papua New Guinea
5,508,297
7,583,269
9,749,640
Solomon Islands
429,978
540,394
691,191
Vanuatu
192,074
245,453
311,685
New Caledonia
213,230
249,750
272,460
Polynesia
French Polynesia
250,927
283,788
301,920
Samoa
184,008
194,672
214,929
Tonga
102,603
107,383
105,254
Tuvalu
9,638
10,550
11,069
Micronesia
Guam
160,188
164,905
169,231
Kiribati
88,826
107,995
126,463
Micronesia (Federated States)
111,709
107,588
112,106
Northern Mariana Islands
80,338
54,087
49,587
Marshall Islands
54,224
53,416
43,413
Palau
19,726
18,540
17,972
Nauru
10,377
10,241
12,315
Subscribe
Enjoy this blog? Get notified of new posts by email: